微分方程式2
科目分野 | 理工学部 |
---|---|
選必区分 | 選択 |
担当教員 [ローマ字表記] |
水野 義紀 [Yoshinori Mizuno] |
授業形態 | 講義 |
授業の目的
連立常微分方程式の解法,ラプラス変換の初歩を修得する.
授業概要
「微分方程式1」に続き、現代工学の基礎として重要な役割を果している連立常微分方程式系の基本的な解法を講義する.初期値問題に有用なラプラス変換についても学ぶ.
到達目標
1.ラプラス変換とその応用ができる.(授業計画1~9と対応し,期末試験で評価)
2.簡単な定数係数連立線形常微分方程式が解ける.(授業計画10~14と対応し,期末試験で評価)
授業計画
1.ラプラス変換の定義
2.ラプラス変換の性質
3.ラプラス変換の諸公式
4.部分分数分解とラプラス逆変換
5.微分方程式への応用
6.畳み込み
7.数理解析への応用
8.留数解析によるラプラス逆変換
9.ラプラス変換のまとめ
10.導入、動機、線形代数の復習
11.行列の指数関数
12.非斉次の連立微分方程式
13.数理解析・2階線型微分方程式への応用
14.連立微分方程式のまとめ
15.期末試験
16.総括
教科書
工科系のための微分方程式/杉山昌平:実教出版, ISBN:9784407021547
キーワード
1.定数係数連立線形常微分方程式 2.ラプラス変換